
Subject Code: CSA105

Two topics have been covered in this document. You will learn about storage

classes and basics of array. Few problems are given at the end of this document.

You are suggested to implement these problems for better understanding of the

concepts.

Topic 1: Storage Classes in C

A storage class defines the scope (visibility) and life-time of variables and/or functions within a

C Program. They precede the type that they modify. We have four different storage classes in a

C program –

 auto

 register

 static

 extern

The auto Storage Class

The auto storage class is the default storage class for all local variables.

{

 int mount;

 auto int month;

}

The example above defines two variables with in the same storage class. 'auto' can only be used

within functions, i.e., local variables.

The register Storage Class

The register storage class is used to define local variables that should be stored in a register

instead of RAM. This means that the variable has a maximum size equal to the register size

(usually one word) and can't have the unary '&' operator applied to it (as it does not have a

memory location).

{

 register int miles;

}

The register should only be used for variables that require quick access such as counters. It

should also be noted that defining 'register' does not mean that the variable will be stored in a

register. It means that it MIGHT be stored in a register depending on hardware and

implementation restrictions.

The static Storage Class

The static storage class instructs the compiler to keep a local variable in existence during the

life-time of the program instead of creating and destroying it each time it comes into and goes

out of scope. Therefore, making local variables static allows them to maintain their values

between function calls.

The static modifier may also be applied to global variables. When this is done, it causes that

variable's scope to be restricted to the file in which it is declared.

In C programming, when static is used on a global variable, it causes only one copy of that

member to be shared by all the objects of its class.

#include <stdio.h>

/* function declaration */

void func(void);

static int count = 5; /* global variable */

main() {

 while(count--) {

 func();

 }

 return 0;

}

/* function definition */

void func(void) {

 static int i = 5; /* local static variable */

 i++;

 printf("i is %d and count is %d\n", i, count);

}

When the above code is compiled and executed, it produces the following result –

i is 6 and count is 4

i is 7 and count is 3

i is 8 and count is 2

i is 9 and count is 1

i is 10 and count is 0

The extern Storage Class

The extern storage class is used to give a reference of a global variable that is visible to ALL

the program files. When you use 'extern', the variable cannot be initialized however, it points

the variable name at a storage location that has been previously defined.

When you have multiple files and you define a global variable or function, which will also be

used in other files, then extern will be used in another file to provide the reference of defined

variable or function. Just for understanding, extern is used to declare a global variable or

function in another file.

The extern modifier is most commonly used when there are two or more files sharing the same

global variables or functions as explained below.

First File: main.c

#include <stdio.h>

int count ;

extern void write_extern();

main() {

 count = 5;

 write_extern();

}

Second File: support.c

#include <stdio.h>

extern int count;

void write_extern(void) {

 printf("count is %d\n", count);

}

Here, extern is being used to declare count in the second file, where as it has its definition in the

first file, main.c.

When this program is executed, it produces the following result −

count is 5

Topic 2: Array

Arrays a kind of data structure that can store a fixed-size sequential collection of elements of the

same type. An array is used to store a collection of data, but it is often more useful to think of an

array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you

declare one array variable such as numbers and use numbers[0], numbers[1], and ...,

numbers[99] to represent individual variables. A specific element in an array is accessed by an

index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the number of

elements required by an array as follows −

datatype arrayName [arraySize];

This is called a single-dimensional array. The arraySize must be an integer constant greater

than zero and datatype can be any valid C data type. For example, to declare a 10-element

array called balance of type double, use this statement −

double balance[10];

Here balance is a variable array which is sufficient to hold up to 10 double numbers.

Initializing Arrays

You can initialize an array in C either one by one or using a single statement as follows −

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } cannot be larger than the number of elements that we

declare for the array between square brackets [].

If you omit the size of the array, an array just big enough to hold the initialization is created.

Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

You will create exactly the same array as you did in the previous example. Following is an

example to assign a single element of the array −

balance[4] = 50.0;

The above statement assigns the 5
th

 element in the array with a value of 50.0. All arrays have 0

as the index of their first element which is also called the base index and the last index of an

array will be total size of the array minus 1. Shown below is the pictorial representation of the

array we discussed above −

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of the

element within square brackets after the name of the array. For example −

double salary = balance[9];

The above statement will take the 10
th
 element from the array and assign the value to salary

variable. The following example Shows how to use all the three above mentioned concepts viz.

declaration, assignment, and accessing arrays −

Live Demo

#include <stdio.h>

int main () {

 int n[10]; /* n is an array of 10 integers */

 int i,j;

 /* initialize elements of array n to 0 */

 for (i = 0; i < 10; i++) {

 n[i] = i + 100; /* set element at location i to i + 100 */

 }

 /* output each array element's value */

 for (j = 0; j < 10; j++) {

 printf("Element[%d] = %d\n", j, n[j]);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result –

Element[0] = 100

Element[1] = 101

http://tpcg.io/dhfplr

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

Try yourself :

1. Write a program to find the sum of all elements of an integer array of size 20.

2. Write a program to implement linear search on an array of size 10.

3. Write a program to print the array elements in reverse order.

4. Write a program to print array elements which are even indexed.

